
ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, IL 60439

A First-Order Smoothing Technique for
a Class of Large-Scale Linear Programs

Jieqiu Chen and Samuel Burer

Mathematics and Computer Science Division

Preprint ANL/MCS-P1971-1011

November 7, 2011

A First-Order Smoothing Technique for

a Class of Large-Scale Linear Programs∗

Jieqiu Chen† Samuel Burer‡

November 7, 2011

Abstract

We study a class of linear programming (LP) problems motivated by large-scale

machine learning applications. After reformulating the LP as a convex nonsmooth

problem, we apply Nesterov’s primal-dual smoothing technique. It turns out that the

iteration complexity of the smoothing technique depends on a parameter θ that arises

because we need to bound the originally unbounded primal feasible set. We design a

strategy that dynamically updates θ to speed up the convergence. The application of

our algorithm to two machine learning problems demonstrates several advantages of

the smoothing technique over existing methods.

Keywords: smoothing technique, large-scale linear programming, nonsmooth op-

timization, machine learning

∗The research of both authors was supported in part by NSF Grant CCF-0545514. J. Chen was supported
in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of
Energy, under Contract DE-AC02-06CH11357.
†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.

Email: jieqchen@mcs.anl.gov
‡Department of Management Sciences, University of Iowa, Iowa City, IA 52242-1994, USA. Email:

samuel-burer@uiowa.edu

2

1 Introduction

We investigate a first-order smoothing technique to solve large-scale instances of the following

linear programming (LP) problem:

min
α,ξ

cTα + wT ξ (P)

s. t. Aα− b ≤ ξ

α, ξ ≥ 0,

where α ∈ <n and ξ ∈ <m are the decision vectors and A ∈ <m×n, b ∈ <m, c ∈ <n+ and

w ∈ <m+ are the data. The optimal value of (P) is bounded below by zero, and thus an

optimal solution exists. The variable ξ may be interpreted as an error, allowing some of the

constraints “Aα ≤ b” to be violated, and the objective term wT ξ then serves to penalize

such violations. Expressed differently, if ξ were fixed to 0, then the above formulation would

be similar to a standard-form LP with c ≥ 0.

Problem (P) is motivated by several machine learning problems. One such example is the

LP-based ranking algorithm (Ataman et al., 2006; Ataman, 2007). Another example is the

1-norm support vector machine (Zhu et al., 2003; Mangasarian, 2006). In Section 5, we will

demonstrate how to cast such machine learning problems as (P). We are also particularly

interested in large instances of (P) for two reasons: (i) while small instances can be solved

efficiently by current LP solvers, for problems where A is large and dense, using simplex or

interior-point methods might not be feasible because of memory limits; and (ii) the machine

learning problems above are often applied to large datasets, making A large. In applications

that involve kernel matrices, such as the popular RBF kernels (Hsu et al., 2003), A is also

usually completely dense.

Several approaches can be used to solve (P). Standard approaches are the simplex method

or interior-point methods. For applications in machine learning, however, (P) is often too

large. For example, Ataman (2007) reported that a moderately sized ranking problem for-

mulated as (P) caused CPLEX to run out of memory on a standard PC. Mangasarian (2006)

formulated a class of LPs, which includes (P) as a special case; he posed the problem as the

unconstrained minimization of a convex differentiable piecewise-quadratic objective function

and solved it using a generalized Newton method. As we will see in Section 5, however, this

method may not be sufficiently robust in some cases.

Another approach is to treat (P) as the equivalent nonsmooth problem

min cTα + wT (Aα− b)+ (NS0)

s. t. α ≥ 0,

where (Aα − b)+ denotes the nonnegative part of the vector Aα − b, and then to solve

(NS0) using nonsmooth techniques such as the standard subgradient method. Compared

with the simplex method and interior-point methods, the subgradient method requires much

less memory (basically the memory to store A). It also has low computational costs at each

iteration (basically A times a vector). The main drawback of the subgradient method is slow

convergence: its worst-case iteration complexity is O(1/ε2) (Nesterov, 2004), where ε is the

error tolerance of a calculated solution.

In this paper, we use Nesterov’s first-order smoothing method (Nesterov, 2005a,b) to solve

(NS0). For bounded feasible sets, the smoothing method has worst-case iteration complexity

O(1/ε), which is an order of magnitude faster than the subgradient method. At the same

time, its computational cost per iteration and memory requirements are comparable to the

subgradient method.

Researchers have successfully applied the smoothing method to many large-scale prob-

lems. Banerjee et al. (2006) considered the problem of fitting a large-scale covariance matrix

to multivariate Gaussian data, which they solved using the smoothing method. Hoda et al.

(2007) and Gilpin et al. (2007) applied the smoothing technique to approximate Nash equilib-

ria of large sequential two-player zero-sum games. Becker et al. (2009) demonstrate that the

smoothing method is ideally suited for solving large-scale compressed sensing reconstruc-

tion problems. Smoothing techniques also have applications in semidefinite programming

(Nesterov, 2007; d’Aspremont, 2008) and general convex optimization (Lan et al., 2009).

Nesterov’s first-order smoothing method applies to the following generic problem:

min{f(x) : x ∈ Q}, (1)

where f is a continuous convex function with a certain structure and Q is a compact convex

set (see Section 2). To apply the smoothing method to (NS0), we will need the following

assumption.

Assumption 1.0.1. Define B := {i ∈ {1, . . . , n} : ci = 0}. We assume αB is bounded in

(P). Specifically, we assume knowledge of h ∈ R|B|++ such that αB ≤ h is valid for at least one

optimal solution of (P).

This assumption allows us to bound the primal feasible set as follows. First, the assumption

just mentioned bounds the subvector αB. Next, the remaining components of α are naturally

bounded by any fixed upper bound on the optimal value of (NS0). In particular, let θ∗ be

the optimal value of (NS0) and θ > 0 be any upper bound on θ∗. We have

cTα∗ ≤ cTα∗ + wT (Aα∗ − b)+ = θ∗ ≤ θ,

and so cTα ≤ θ is valid for the optimal set of (NS0). Therefore, (NS0) is equivalent to the

following problem over a compact convex set:

min
α≥0

cTα + wT (Aα− b)+ (NS)

s. t. cTα ≤ θ, αB ≤ h.

Based on (NS0) and (NS), we prove that the iteration complexity of Nesterov’s smoothing

method is a function of θ, and we show that the smoothing algorithm can be improved by

dynamically updating θ as it generates better bounds on θ∗. To the best of our knowledge,

this is the first application of the smoothing technique to solve problems such as (P) with

unbounded feasible sets.

Independently, Zhou et al. (2010) considered applying Nesterov’s smoothing technique to

several SVM problems, including the 1-norm SVM that we will study in Section 5. However,

it is not clear to us how they circumvented the unboundedness issue of the primal feasible

set since they provide no discussion of this issue. Moreover, they use Nesterov’s primal-only

smoothing method (Nesterov, 2005a) whereas our algorithm is based on the primal-dual

excessive gap technique (Nesterov, 2005b). Our treatment of specific ingredients of the

method is also different, as will be shown in Section 3.

This paper is organized as follows. We summarize the major ingredients of the smoothing

technique in Section 2 to facilitate later discussion. In Section 3, we show how to convert

(P) into a problem of the form (1), and we specify the major components of the smoothing

technique, such as the choice of the so-called prox-functions and derivations of various pa-

rameters. In Section 4, we design a strategy to dynamically update the upper bound θ and

show how it speeds up the smoothing method. In Section 5, we present two machine learning

applications of the smoothing technique. In particular, we compare the smoothing technique

with two existing methods, respectively, and demonstrate that the smoothing technique has

several advantages.

2 Nesterov’s Smoothing Technique

In this section, we review the major ingredients of Nesterov’s smoothing technique: the

excessive gap condition and convergence rate. We focus on the concepts and results that

will be used in our study and leave out technical details. First, we introduce some notation

and definitions that will be used throughout the paper.

2.1 Notation and terminology

Let E denote a finite-dimensional real vector space, possibly with an index. This space is

equipped with a norm ‖ · ‖, which has the same index as the corresponding space. Let Â

be a linear operator from E1 to E2, that is, Â : E1 → E2. Define the operator norm of Â,

induced by the norms ‖ · ‖1 and ‖ · ‖2, as

‖Â‖1,2 = max
‖x‖1=1

max
‖u‖2=1

〈Âx, u〉,

where 〈·, ·〉 refers to the regular inner product. Note ‖ · ‖1 and ‖ · ‖2 do not necessarily

represent the standard l1-norm and l2-norm; the subscripts are indices only. The operator

norm has the following property:

‖Â‖1,2 = max
‖x‖1=1

‖Âx‖∗2 = max
‖u‖2=1

‖ÂTu‖∗1,

where ‖ · ‖∗ denotes the dual norm associated with ‖ · ‖ and is defined as

‖z‖∗ := max{〈z, x〉 : ‖x‖ ≤ 1}.

We use Âi to denote the ith row of Â and Âj the jth column of Â. Similarly, we use ÂI

(ÂJ) to denote the rows (columns) of Â indexed by the set I (J). For a vector v ∈ <n,

v−1 ∈ <n denotes the vector whose components are the inverses of the components of v. We

let Diag(v) represent the diagonal matrix with diagonal v. We use e to represent a vector of

all ones. The dimension of e may differ but should be clear from the context.

2.2 A primal-dual smoothing method

Consider the following functions f(x) and φ(u):

f(x) = f̂(x) + max
u∈Q2

{〈Âx, u〉 − φ̂(u)} (2)

φ(u) = −φ̂(u) + min
x∈Q1

{〈Âx, u〉+ f̂(x)}, (3)

where Q1 and Q2 are (simple) compact convex sets in finite-dimensional Euclidean spaces

E1 and E2, respectively; Â is a linear operator mapping E1 to E2; and f̂(x) and φ̂(u) are

continuous convex functions on Q1 and Q2, respectively. Thus, f(x) is convex and φ(u) is

concave, but they are not necessarily differentiable. For any x̄ ∈ Q1 and ū ∈ Q2 we have

φ(ū) ≤ f(x̄) (4)

because

φ(ū) = −φ̂(ū) + min
x∈Q1

{〈Âx, ū〉+ f̂(x)}

≤ −φ̂(ū) + 〈Âx̄, ū〉+ f̂(x̄)

≤ f̂(x̄) + max
u∈Q2

{〈Âx̄, u〉 − φ̂(u)}

= f(x̄).

Nesterov’s smoothing technique uses a primal-dual approach to solve the following optimiza-

tion problems simultaneously:

min{f(x) : x ∈ Q1}, (5)

max{φ(u) : u ∈ Q2}. (6)

Note that by Fenchel duality (Borwein and Lewis, 2006), (6) is the dual problem of (5)

and there is no duality gap. Because of the nondifferentiability, the primal-dual approach

does not directly deal with f(x) and φ(u). Instead it works with the following “smoothed”

versions:

fµ2(x) = f̂(x) + max
u∈Q2

{〈Âx, u〉 − φ̂(u)− µ2d2(u)} (7)

φµ1(u) = −φ̂(u) + min
x∈Q1

{〈Âx, u〉+ f̂(x) + µ1d1(x)}, (8)

where µi is a positive smoothness parameter and di(·) is a prox-function on the set Qi,

which means di(·) is continuous and strongly convex on Qi. A strongly convex function d(·)
has the following property for some σ > 0: d(x) ≥ d(x∗) + 1

2
σ‖x − x∗‖2 for all x ∈ Q,

where x∗ = arg minx∈Q d(x). The purpose of introducing these prox-functions is to smooth

f(x) and φ(u). The resultant fµ2(x) and φµ1(u) are differentiable, and their gradients are

Lipschitz-continuous. When µ1 and µ2 are small, fµ2 ≈ f and φµ1 ≈ φ.

By definition we have fµ2(x) ≤ f(x) and φ(u) ≤ φµ1(u). For sufficiently large µ1 and µ2,

one can show that there exist some x̄ ∈ Q1 and ū ∈ Q2 satisfying the following excessive gap

condition (EGC):

fµ2(x̄) ≤ φµ1(ū). (EGC)

(EGC) is like a switched version of (4), which ensures that the primal-dual gap is bounded

above, as stated in the following lemma.

Lemma 2.2.1 (Nesterov (2005b)). Let x̄ ∈ Q1 and ū ∈ Q2 satisfy (EGC). Then 0 ≤
f(x̄)− φ(ū) ≤ µ1D1 + µ2D2, where D1 := maxx∈Q1 d1(x) and D2 := maxu∈Q2 d2(u).

In addition to Lemma 2.2.1, the smoothing technique features three other important ingre-

dients:

(i) A procedure that calculates an initial (x0, u0, µ0
1, µ

0
2) satisfying (EGC), namely, fµ02(x

0) ≤
φµ01(u

0);

(ii) Given (xk, uk, µk1, µ
k
2) satisfying (EGC), a procedure that generates (xk+1, uk+1, µk+1

1 , µk+1
2)

satisfying (EGC) as well;

(iii) µk+1
i ≤ µki , i = 1, 2, where one of the two inequalities is strict and µki → 0, i = 1, 2.

Ingredients (i) and (ii) generate a sequence {
(
xk, uk, µk1, µ

k
2

)
} that satisfies (EGC) for each

k. Because of Lemma 2.2.1 and (iii), the primal-dual gap goes to zero as k increases; that is,

0 ≤ f(xk)− φ(uk) ≤ µk1D1 + µk2D2 → 0. (9)

As long as (EGC) is maintained, (9) will hold for all k.

Theorem 2.2.1. (Nesterov (2005b)) Given ε > 0, there is an algorithm based on the smooth-

ing technique that produces a pair (xN , uN) ∈ Q1 ×Q2 such that

0 ≤ f(xN)− φ(uN) ≤ ε

in

N =
4‖Â‖1,2

ε

√
D1D2

σ1σ2

iterations.

In each iteration of the algorithm, one needs to update
(
xk, uk, µk1, µ

k
2

)
, a process that

requires solving several subproblems in the form of the inner max problem in (7) or the inner

min problem in (8). Therefore, the solutions of these max and min problems should be easily

computable. We omit the generic scheme here; we will describe the specific algorithm with

respect to our problem in Section 3.3.

3 Applying the Smoothing Technique

In this section, we show how to convert (NS) into the standard form required by the smooth-

ing technique. After the conversion, we specify all ingredients, including our choice of the

prox-functions, the calculation of parameters for the smoothing technique, and the iteration

complexity for solving (NS). In the last subsection, we detail the algorithm.

3.1 Reformulation

We define two notations that will be used throughout this section. Let �m denote the

standard box of dimension m:

�m := {u ∈ <m : 0 ≤ u ≤ e}.

Let 4n denote the standard simplex of dimension n:

4n := {x ∈ <n : x ≥ 0, 〈e, x〉 = 1} .

For notational convenience, we will drop the dimension subscript when the dimension is clear

from context.

We first reformulate the nonsmooth part of the objective function, 〈w, (Aα − b)+〉, as a

maximization problem. Since w is nonnegative, we have

〈w, (Aα− b)+〉 =
〈
e,Diag(w) (Aα− b)+〉

=

〈
e,
(

Diag(w)(Aα− b)
)+
〉

= max
u∈�m

{〈Diag(w)(Aα− b), u〉}

= max
u∈�m

{〈Diag(w)Aα, u〉 − 〈Diag(w)b, u〉} .

Next, we transform the primal feasible set {α ∈ <n+ : αB ≤ h, 〈c, α〉 ≤ θ} with θ > 0 into

a simpler set by changing variables. The purpose of the transformation is to simplify the

problem presentation, especially to facilitate the application of Nesterov’s method. Recall

that cB = 0 and thus 〈c, α〉 = 〈cB̄, αB̄〉, where B̄ := {1, . . . , n}\B. Define a new variable

x ∈ <n+1 as follows:

xB := Diag (h−1)αB

xS := 1
θ

(
Diag (cB̄)αB̄

θ − 〈cB̄, αB̄〉

)
, (10)

where S := B̄ ∪ {n+ 1}. Because 0 ≤ αB ≤ h, we see that xB is inside a box with dimension

|B|. Because α ≥ 0 and 〈c, α〉 ≤ θ, xS resides in a simplex with dimension |S| = n+ 1− |B|.
So the primal feasible set becomes

{x ∈ <n+1 : xB ∈ 2, xS ∈ 4}.

The last step of the reformulation involves defining a new set of data Â ∈ <m×(n+1),

b̂ ∈ <m, and ê ∈ <n+1 as follows:

ÂS :=
(

Diag(w)AB̄ Diag(c−1
B̄) 0

)
(11)

ÂB :=
1

θ
Diag(w)AB Diag(h) (12)

b̂ := Diag(w)b

êB := 0, êB̄ := e, ên+1 := 0.

With the above definition, one can easily verify that the objective function of (NS) can be

expressed in terms of x:

〈c, α〉+ 〈w, (Aα− b)+〉 = θ

[
〈ê, x〉+ max

u∈�

{
〈Âx, u〉 − 1

θ
〈b̂, u〉

}]
=: θf(x; θ), (13)

and thus (NS) is equivalent to the following problem

min {f(x; θ) : xS ∈ ∆, xB ∈ �} . (SP)

Based on the primal-dual structure of (2) and (3), we immediately have the dual problem

max {φ(u; θ) : u ∈ �} , (SD)

where

φ(u; θ) := −1

θ
〈b̂, u〉+ min

xS∈∆,xB∈�

{
〈Âx, u〉+ 〈ê, x〉

}
.

The smoothing technique we described in Section 2.2 can be used to solve (SP) and (SD).

For any primal feasible solution x̄ obtained from the smoothing technique, it is easy to

recover a feasible solution ᾱ to (NS) by just reversing the transformation. Note that by (13),

the objective f(x̄; θ) needs to be scaled by θ in order to recover the objective value of (NS).

In fact, this property will influence the iteration complexity of the smoothing technique. In

particular, the primal error (the absolute difference between the primal objective value and

the optimal value) of (NS) is the primal error of (SP) scaled by θ.

Lemma 3.1.1. Define p(α) := 〈c, α〉+ 〈w, (Aα− b)+〉, and let x∗ be an optimal solution of

(SP). Recall θ∗ denotes the optimal value of (NS). Suppose x̄ is feasible to (SP) and ᾱ is

the corresponding feasible solution to (NS). Then

p(ᾱ)− θ∗ = θ
(
f(x̄; θ)− f(x∗; θ)

)
. (14)

Proof. ᾱ (α∗) can be obtained by x̄ (x∗) through the relationship (10). By (13), p(ᾱ) =

θf(x̄; θ) and p(α∗) = θ∗ = θf(x∗; θ), and the result follows.

3.2 Specifications

In this subsection, we discuss in detail each ingredient of the smoothing technique. The

choice of norms and prox-functions is critical. We select the l1-norm and the entropy distance

function as the prox-function (see Nesterov (2005a)) for the primal space, and the l2-norm

and a “distance squared” quadratic function for the dual space:

‖x‖1 :=
n+1∑
i=1

|xi|, d1(x) := ln(|S|) + |B| · exp(−1) +
n+1∑
i=1

xi lnxi (15)

‖u‖2 :=

√√√√ m∑
j=1

(uj)
2, d2(u) :=

1

2

m∑
j=1

(
uj −

1

2

)2

. (16)

With these choices, we calculate the parameters that determine the iteration complexity of

the smoothing technique:

D1 = max
x
{d1(x) : xS ∈ ∆, xB ∈ �} = ln(|S|) + |B| · exp(−1), σ1 = 1,

the derivation of which can be found in Lemma 3 of Nesterov (2005a). The prox-function

d1(·) achieves its minimum at x0 = e/(n+ 1), where d1(x0) = 0. It is easy to verify that

D2 = max
u
{d2(u) : u ∈ �m} =

m

8
, σ2 = 1,

and d2(·) achieves its minimum at u0 = 1
2
e. The operator norm of Â is thus

‖Â‖1,2 = max
u

{
‖ÂTu‖∗1 : ‖u‖2 = 1

}
= max

u

{
max

i∈{1,...,n+1}

{
〈Âi, u〉

}
: ‖u‖2 = 1

}
= max

i∈{1,...,n}

{
max
u

{
〈Âi, u〉 : ‖u‖2 = 1

}}
= max

i∈{1,...,n}
‖Âi‖2.

The second equality follows because the dual norm of the l1-norm is the l∞-norm. The third

equality follows from the fact that Â’s last column is zero, as shown by (11).

With all the parameters computed, we are ready to state the iteration complexity of

solving (SP) and (SD).

Proposition 3.2.1. Using Nesterov’s smoothing technique, for any ε > 0, we obtain a pair

of solutions (xN , uN) to (SP) and (SD) such that

0 ≤ f(xN ; θ)− φ(uN ; θ) ≤ ε

in

N := N(θ) :=
1

ε

(
max

i∈{1,...,n}
‖Âi‖2

)√
2 [ln(|S|) + |B| · exp(−1)] ·m (17)

iterations.

Proof. The result is obtained by applying Theorem 2.2.1.

By (12), ÂB is dependent on 1/θ, and so the number of iterations of the smoothing technique

depends on θ. We thus write N := N(θ) as a function of θ to reflect this dependence.

We comment that different combinations of norms and prox-functions other than (15)

and (16) may lead to different parameter values and thus different iteration complexities.

We considered several choices for the dual space, and the choice (16) gives us the lowest

iteration complexity among those considered. For example, one could choose the l1-norm

and the same prox-function as d1(x) for the dual space; the resultant iteration complexity is

O(
√
m) times larger than (17), which is much worse than the current one if m is large.

In Proposition 3.2.1, the iteration complexity is stated with respect to (SP). Now we

state the iteration complexity with respect to (NS).

Proposition 3.2.2. Using Nesterov’s smoothing technique, for any ε > 0, we obtain a

solution ᾱ to (NS) such that 0 ≤ p(ᾱ)− θ∗ ≤ ε in

N ′ := θN(θ)

iterations, where N(θ) is given by (17).

Proof. By Proposition 3.2.1, in N ′ iterations, we obtain a solution (x̄, ū) such that the

primal-dual gap is small enough:

0 ≤ f(x̄; θ)− φ(ū; θ) ≤ ε

θ
.

We then can construct ᾱ feasible to (NS). Thus, by (14), we have

0 ≤ p(ᾱ)− θ∗ = θ
(
f(x̄; θ)− f(x∗; θ)

)
≤ θ
(
f(x̄; θ)− φ(ū; θ)

)
≤ ε.

From this proposition, the iteration complexity of solving (NS) is a function of the upper

bound θ. This is not so surprising because the primal feasible set is originally unbounded,

and the hidden upper bound θ is discovered by exploiting the structure of the objective

function. In particular, using (17), we see that N ′ = θN(θ) is increasing (more precisely,

non-decreasing) in θ. So the smaller θ is, the better. One could always apply some heuristics

to get a good θ. In Section 4, we instead introduce a strategy that dynamically updates θ and

consequently reduces the iteration complexity for solving (NS) as the algorithm progresses.

From now on, we also drop the θ from N(θ) for notational convenience.

Next we discuss the subproblems associated with our choice of prox-functions. These

subproblems will be solved repeatedly in the algorithm presented in Section 3.3, and thus it

is important to have closed-form solutions for them. The subproblems are the max and min

problems presented within the following smoothed versions of our primal and dual objective

functions (recall (7) and (8)):

fµ2(x; θ) = 〈ê, x〉+ max
u∈�m

{
〈Âx, u〉 − 1

θ
〈b̂, u〉 − µ2d2(u)

}
φµ1(u; θ) = −1

θ
〈b̂, u〉+ min

xS∈∆, xB∈�

{
〈Âx, u〉+ 〈ê, x〉+ µ1d1(x)

}
,

where d1(x) and d2(u) are given in (15) and (16).

Consider the min subproblem first. Its solution is sargmin(d1,− 1
µ1

(ÂTu+ ê)), where

sargmin(d1, s) := arg min
x∈Q1

{−〈s, x〉+ d1(x)} = arg min
xS∈∆,xB∈�

{
−〈s, x〉+

n+1∑
i=1

xi lnxi

}
.

The following lemma establishes a closed-form for sargmin(d1, s):

Lemma 3.2.1. Given s, the solution sargmin(d1, s) is given by

[sargmin(d1, s)]i =


exp(si)∑|S|

j=1 exp(sj)
, i ∈ S

proj[0,1] (exp (si)) , i ∈ B
,

where proj[0,1](y) projects y to the nearest point between 0 and 1.

Proof. The objective function is separable in S and B. For optimizing this function over the

simplex, see Lemma 4 in Nesterov (2005a). For optimizing over the box, we compute the

point at which the first-order derivative vanishes and then project that point back to the

feasible region.

Now consider the max subproblem. In a similar manner, its solution is sargmin(d2,
1
µ2

(Âx−
b̂/θ)), where

sargmin(d2, s) := arg min
u∈Q2

{−〈s, u〉+ d2(u)} = arg min
u∈�

{
−〈s, u〉+

m∑
j=1

(
uj − 1

2

)2

}
.

This problem also has a closed-form solution:

Lemma 3.2.2. Given s, the solution sargmin(d2, s) is given by

[sargmin(d2, s)]j = proj[0,1]

(
1
2
(1 + sj)

)
, j = 1, . . . ,m,

where proj[0,1](y) projects y to the nearest point between 0 and 1.

Proof. Observe that

−〈s, u〉+
m∑
j=1

(
uj − 1

2

)2
=

m∑
j=1

(
u2
j − (sj + 1)uj + 1

4

)
.

So the problem reduces to solving m one-dimensional quadratic problems whose solutions

are as stated.

3.3 Algorithm

The algorithmic scheme presented by Nesterov (2005b) is generic, and this problem-specific

parameters for our problem have been calculated in Sections 3.1 and 3.2. In this subsection,

we explicitly state the scheme with respect to (SP) and (SD). In this algorithm, there

are three functions: (i) Initial initializes all the parameters and the primal-dual solution

(x0, u0) satisfying (EGC); (ii) Update1 is the primal update; (iii) Update2 is the dual

update. Update1 and Update2 are symmetric but entail different subproblems. Here is

Initial.

Algorithm 1 Initial

Input: Data (m,n, Â, b̂, ê, θ)

Output: Initialized parameters (µ0
1, µ

0
2) and solutions (x0, u0) that satisfy (EGC)

1: D1 = ln(|S|) + |B| · exp(−1), D2 = m/8, σ1 = σ2 = 1, ‖Â‖1,2 = maxi∈{1,...,n} ‖Âi‖2

2: µ0
1 = 2 ‖Â‖1,2

√
D2

σ1σ2D1
, µ0

2 = ‖Â‖1,2

√
D1

σ1σ2D2

3: x̄ = sargmin(d1, 0)

4: u0 = sargmin
(
d2,

1
µ02

(Âx̄− b̂/θ)
)

5: x0 = sargmin

(
d1, ln(x̄) + e− µ02

‖Â‖21,2
(ATu0 + ê)

)

Here is the primal update (when k is even).

Algorithm 2 Update1: primal update

Input: Current solution (x, u) and parameters (µ1, µ2, τ, θ)

Output: (x+, u+, µ+
1 , µ

+
2) that satisfy (EGC)

1: x̄ = sargmin
(
d1,− 1

µ1
(ÂTu+ ê)

)
2: x̂ = (1− τ)x+ τ x̄

3: ū = sargmin(d2,
1
µ2

(Â x̂− b̂/θ))

4: x̂ = sargmin
(
d1, ln(x̄) + e− τ

(1−τ)µ1
(ÂT ū+ ê)

)
5: x+ = (1− τ)x+ τ x̂

6: u+ = (1− τ)u+ τ ū

7: µ+
1 = (1− τ)µ1, µ+

2 = µ2

Here is the dual update (when k is odd).

Algorithm 3 Update2: dual update

Input: Current solution (x, u) and parameters (µ1, µ2, τ, θ)

Output: (x+, u+, µ+
1 , µ

+
2) that satisfy (EGC)

1: ū = sargmin(d2,
1
µ2

(Â x− b̂/θ))

2: û = (1− τ)u+ τ ū

3: x̄ = sargmin(d1,− 1
µ1

(ÂT û+ ê))

4: û = sargmin(d2,
τ

(1−τ)µ2
(Â x̄− b̂/θ) + ū− 1

2
e)

5: x+ = (1− τ)x+ τ x̄

6: u+ = (1− τ)u+ τ û

7: µ+
2 = (1− τ)µ2, µ+

1 = µ1

The entire Smooth algorithm is as follows.

Algorithm 4 Smooth

Input: (i) Data (m,n, Â, b̂, ê, θ, N ′); (ii) Subroutines sargmin(d1, ·) and sargmin(d2, ·)

Output: (xN
′
, uN

′
)

1: (x0, u0, µ0
1, µ

0
2) = Initial (m,n, Â, b̂, ê, θ)

2: for k = 0, 1, . . . , N ′ − 1 do

3: τ = 2
k+3

4: if k is even then

5: (xk+1, uk+1, µk+1
1 , µk+1

2) = Update1(xk, uk, µk1, µ
k
2, τ, θ)

6: else

7: (xk+1, uk+1, µk+1
1 , µk+1

2) = Update2(xk, uk, µk1, µ
k
2, τ, θ)

We have two comments regarding the Smooth algorithm: First, according to Lemma

3.2.1 and Lemma 3.2.2, the subproblems have closed-form solutions and can be solved quickly.

The most time-consuming operations are thus the matrix-vector multiplications Âx̄ and ÂT ū.

Second, θ is treated as an fixed parameter for Update1 and Update2. In the next section,

we will discuss a simple procedure that dynamically updates θ, and the algorithm will be

valid even with changing values of θ.

4 Speeding Up the Convergence

As shown in Proposition 3.2.2 and its subsequent discussion, the iteration complexity for

obtaining an ε-solution of (NS) is directly related to θ/ε, where θ > 0 is an upper bound on

the optimal value of (NS). As an input parameter, the smaller θ is, the better the iteration

complexity, and the best possible θ is the optimal value θ∗. We will of course obtain new

information on θ∗ as Algorithm 4 progresses; in particular, an improved primal objective

value will give a better upper bound on θ∗ than θ. To take advantage of this information,

we consider updating θ dynamically within Algorithm 4.

Suppose we have a better bound θ+ ∈ [θ∗, θ) available after running Algorithm 4 for K

iterations, where K < N ′ = θN . Recall N , as defined in (17), depends on the error tolerance

ε. With θ+ on hand, it may be worthwhile to restart the algorithm and input θ+ for the

new run, if the number of iterations required by the new run plus the number of iterations

already run is smaller than the iteration estimate under θ, that is, if K + θ+N(θ+) < θN(θ)

holds.

Even better, we will show that it is possible to improve the iteration complexity to

θ+N(θ+)—without restarting the algorithm—provided that the condition (EGC) is carefully

maintained when updating the parameter θ to θ+. To achieve this result, let θ > θ∗ be

the current upper bound on the optimal value, and let k be the iteration counter. The

following lemma shows, under mild conditions, the existence of θ+ ∈ (θ∗, θ) and k such that

(xk, uk, µk1, µ
k
2) satisfies (EGC) with respect to θ+.

Lemma 4.0.1. Within Algorithm 4, suppose (xk, uk, µk1, µk2) satisfies (EGC) strictly with

respect to θ; that is, fµk2 (xk; θ) < φµk1 (uk; θ). Suppose also that f(xk; θ) < 1. Then there

exists θ+ ∈ (θ∗, θ) such that (xk, uk, µk1, µk2) also satisfies (EGC) for θ+:

fµk2 (xk; θ+) ≤ φµk1 (uk; θ+). (18)

Proof. Define θk := θf(xk; θ). Based on the relationship (14), we know θk ≥ θ∗, i.e., θk is a

valid upper bound on θ∗. Then f(xk; θ) < 1 implies θk ∈ [θ∗, θ). If fµk2 (xk; θk) ≤ φµk1 (uk; θk)

holds, simply set θ+ := θk. Otherwise, g(τ) := fµk2 (xk; τ)−φµk1 (uk; τ) is a continuous function

of τ , and we have g(θk) > 0 and g(θ) < 0. So there exists θ+ ∈ (θk, θ) such that g(θ+) ≤ 0.

In other words, (18) holds.

We remark that, intuitively, if the error tolerance ε is small enough, the condition f(xk; θ) < 1

in the lemma eventually holds for large enough k since f(x∗; θ) = θ∗/θ < 1.

From now on, we use pk to represent the primal value p(αk) for notational convenience.

By (9), we have

f(xk; θ)− φ(uk; θ) ≤ µk1D1 + µk2D2 =: Uk, k = 1, 2, . . . ,

where the bounding sequence
{
Uk
}∞
k=1

is independent of θ. Thus, by (14), the primal error

pk − θ∗ at iteration k is bounded above by θUk because

pk − θ∗ = θ
(
f(xk; θ)− f(x∗; θ)

)
≤ θ

(
f(xk; θ)− φ(uk; θ)

)
≤ θUk, k = 1, 2, (19)

On the other hand, because (EGC) holds for θ+ by Lemma 4.0.1, an identical argument

shows that

pk − θ∗ ≤ θ+Uk. (20)

So, instead of θUk, the improved upper bound θ+Uk is proven to hold at iteration k. Since

the smoothing technique guarantees that (EGC) is maintained in the next iteration as long

as it holds at the current iteration, immediately switching θ to θ+ allows us to bound the

primal error from the current iteration onwards by the sequence {θ+U l}∞l=k. Said differently,

updating θ with θ+ helps speed up the convergence as the subsequent primal error is bounded

above by the new sequence
{
θ+U l

}∞
l=k

. Note that the primal-daul solutions generated in

subsequent iterations are different than those that would have been generated with the

parameter θ because the parameter θ+ affects the subroutines Update1 and Update2.

Based on this analysis, we have the following proposition.

Proposition 4.0.1. If, during the course of Algorithm 4, a new upper bound θ+ ∈ [θ∗, θ)

satisfying (18) is employed for Algorithm 4, then the number of iterations required to obtain

an ε-solution of (NS) reduces from θN to θ+N .

We have a couple of comments. First, we have demonstrated the existence of θ+ in Lemma

4.0.1, but there appears to be no closed-form formula for it. One simple procedure to obtain

θ+ is as follows. Periodically check the conditions of Lemma 4.0.1. If they hold, then do the

following: (i) set θ+ := θf(xk; θ); (ii) while fµ2(x
k; θ+) > φµ1(u

k; θ+), set θ+ := 1/2 (θ+ + θ).

Steps (i) and (ii) will not affect other parts of the Smooth algorithm and can be put into

the algorithm conveniently.

Second, to maintain the excessive gap condition, one can easily see that θ+ should be

chosen in a neighborhood of θ, and so the reduction of the number of iterations by updating

θ may not be big. However, the procedure of updating θ can be performed repeatedly. As

the algorithm converges, the updated parameter value becomes a better and better approx-

imation of θ∗, and thus the cumulative improvements might be significant.

We close this section with an example that illustrates the effects of dynamically updating

θ. The example is an instance from the first application that will be discussed in Section 5.1

and is created with the dataset dermatology from Asuncion and Newman (2007). The data

matrix A in (P) has dimension 6760 × 358. We did three runs of the Smooth algorithm

with the following variations:

(i) Initial input of trivial θ = 〈w, (−b)+〉, and the Smooth algorithm is run without

updating θ;

(ii) Initial input of trivial θ = 〈w, (−b)+〉, and the Smooth algorithm is run with the

dynamic update of θ;

(iii) Initial input of θ = θ∗, where the optimal value θ∗ has been calculated using a standard

LP solver, and there is no update on θ because the bound is already optimal.

While case (iii) is not realistic because θ∗ is the idealized best upper bound, which is gotten

by pre-solving the LP, it serves as a best-case comparison for cases (i) and (ii).

Figure 1 shows the results in log-log scale. The first subplot shows how the primal error

pk − θ∗ changes over time. One can see that dynamically updating θ reduces the error

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

time in sec.

er
ro

r

Error

case(i)
case(ii)
case(iii)

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Primal−dual gaps and their bounds

time in sec.

pr
im

al
−

du
al

 g
ap

case(i) bound
case(i) gap
case(ii) bound
case(ii) gap
case(iii) bound
case(iii) gap

Figure 1: Comparison of running Smooth algorithm under cases (i)–(iii). The left subplot
shows the change of the primal error p(α) − θ∗ over time; the right subplot shows how the
primal-dual gap changes over time and compares it with the theoretical upper bounds.

significantly and its performance is almost as good as the ideal case (iii). We also comment

that, in this particular example, θ∗ � 〈w, (−b)+〉 and thus the starting value of the error

for case (iii) is far smaller than for (i) and (ii). Note also that (i) and (ii) are identical until

the iteration when θ is first updated. The second subplot demonstrates how the primal-dual

gap θ
(
f(xk; θ)− φ(uk; θ)

)
changes over time for the three cases (depicted as solid lines). It

also plots the upper bound sequence θUk (depicted as dashed lines) to show how θ affects

the primal-dual gap. Note that for this example, the upper bound associated with case (ii)

changes over time because θ is being updated repeatedly.

5 Applications and Computational Experiments

In this section, we study the application of Algorithm 4 for solving two machine learning

problems: (i) a linear programming based ranking method (Ataman et al., 2006; Ataman,

2007); (ii) 1-norm SVMs (see, for example, Mangasarian (2006) for the formulation of the

1-norm SVM and more references). In the following two subsections, we first briefly de-

scribe the two applications and reformulate them as (P). We then conduct computational

experiments to compare Algorithm 4 with existing algorithms for the respective applications.

5.1 Linear programming-based ranking method

The linear programming-based ranking method proposed in Ataman (2007) is designed to

train a scoring function that ranks all positive points higher than all negative points (from

data that is assumed to have binary output). This ranking method is reported to perform

better than SVM-based ranking algorithms.

Let (xl, yl) be an instance in the training set X 3 l. The class label is yl ∈ {1,−1}.
Let X+, X− represent the set of points with positive and negative labels, respectively. Let

K(·, ·) denote a chosen kernel function, for example, the RBF kernel function. At its core,

the ranking method is the following optimization problem:

min
∑
l∈X

αl + C
∑

i∈X+, j∈X−
wi,jξi,j (LPR)

s. t.
∑
l∈X

yl [K(xi, xl)−K(xj, xl)]αl ≥ 1− ξi,j ∀ i ∈ X+, j ∈ X−

α ≥ 0, ξ ≥ 0,

where α ∈ <|X| and ξ ∈ <|X+|×|X−| are the decision vectors and all else is data. It is assumed

that C > 0 and wi,j ≥ 0 for all i ∈ X+, j ∈ X−.

To put (LPR) in the form of (P), we define

Ai×j,l := −yl [K(xi, xl)−K(xj, xl)] , ∀ i× j ∈ X+ ×X−, l ∈ X

m := |X+| × |X−|

n := |X| = |X+|+ |X−|,

such that A ∈ <m×n. Now (LPR) is readily modeled as (P) with data

c = e ∈ <n, w = Ce ∈ <m, b = −e ∈ <m.

Notice that m grows quadratically as the number of data points grows, and thus A be-

comes large-scale even for medium-sized datasets. In addition, since every entry of A is the

difference of two kernel functions, A is usually fully dense.

In Ataman (2007), the subgradient method is proposed for (LPR) because the method is

memory efficient and thus is able to solve large-scale instances. In our computational study,

we compare Algorithm 4 with the subgradient method implemented in Ataman (2007), which

is essentially the incremental subgradient method (Nedic and Bertsekas, 2001). We collected

14 datasets from the UCI Machine Learning repository (Asuncion and Newman, 2007) and

prepare them in the same way as in Ataman (2007). Table 1 describes the processed data

A. We point out that among the problems in Table 1, cancer and diabetes cannot be solved

by a commercial LP solver, like CPLEX (via either primal or dual LP formulation), on a

machine with 4 GB RAM without perhaps some special handling of the memory.

Table 1: Statistics of A: dimension, percentage of nonzeros, and storage size in Matlab
format (instances are ordered increasingly by the number of nonzeros).

Instance m n Nonzeros (%) Size (MB)
wine 6240 178 11% 0.2
iris 5000 150 100% 5.4
glass 5365 214 100% 8.3
ntyroid 5550 215 98% 7.3
sonar 10767 208 100% 16.4
derma 6760 358 93% 6.6
heart 18000 270 100% 32.9
ecoli 14768 336 100% 36.3
spectf 24638 351 93% 20.0
ion 28350 351 100% 72.7
liver 29000 345 100% 60.6
boston 21984 506 100% 50.2
cancer 75684 569 100% 314.6
diabetes 134000 768 96% 409.1

One benefit of the smoothing technique is the availability of the primal-dual gap, which

can serve as a good stopping criterion. On the contrary, it is not easy to obtain a primal-

dual gap for the subgradient method.1 So, in order to compare the two methods without

a common stopping criterion, we perform the computational experiments in the following

way. First, we solve each instance via Algorithm 4 with error tolerance ε = 1 and obtain

the best objective value found by the smoothing technique. Second, we run the subgradient

method until it finds at least as good an objective value as the smoothing technique, or

until it reaches the time limit. We set a time limit of 18,000 seconds for both methods. All

computations were performed on a Pentium D running at 3.2 GHz under the Linux operating

system with 4 GB RAM.

Table 2 presents the CPU times and the best objective values found when the algorithms

terminate. Except for the two largest instances, we have the optimal values of the ranking

problems available for gauging the quality of the solutions, as listed under the column θ∗.

The subgradient method was able to find as good a solution as the smoothing technique in

1Nesterov (2009) proposes a primal-dual subgradient scheme, and we have implemented it for comparison.
However, empirically we found the estimate (upper bound) of the primal-dual gap of the subgradient method
(see (3.3) in Nesterov (2009)) is pessimistic and is usually much larger than the gap of the smoothing technique
when both methods achieve similar primal values.

5 out of the 14 instances within the time limit and is faster in 3 out of those 5 instances.

For the remaining 9 instances, the smoothing technique either is faster than the subgradient

method in achieving the same quality solution or obtains better solutions in the same amount

of time.

Table 2: Comparison of Algorithm 4 (Smooth) and the subgradient method (Subg.) when
applied to 14 linear ranking problems. θ∗ is the optimal value of the ranking problem, but
it is not available for the two largest instances. Times are in seconds and rounded to the
nearest integers. Here t represents that the time limit (18,000 sec.) was exceeded.

Time (in sec.) Best Obj.

Dataset Smooth Subg. θ∗ Smooth Subg.
wine 111 39 77.82 78.82 78.76
iris 1104 7001 3317.72 3318.72 3318.72
glass 1296 t 2850.45 2851.45 2852.00
ntyroid 1232 4153 1694.65 1695.65 1695.65
sonar 2136 1055 191.85 192.85 192.85
derma 119 7 28.71 29.67 29.36
heart 5687 t 1240.92 1241.92 1249.52
ecoli t t 8421.05 8422.60 8453.03
spectf 11203 t 1580.99 1587.17 1634.22
ion t t 2578.49 2583.15 2634.61
liver t t 11339.9 11370.30 11641.30
boston t t 889.88 890.94 899.03
cancer t t — 17989.09 27520.79
diabetes t t — 14327.73 28070.29

We also plot the primal objective value errors of both methods versus the CPU times for

one instance, glass , in Figure 2. We comment that Figure 2 reflects the typical behavior of

the two methods. The subgradient method finds good solutions rapidly, but its convergence

is slow; the smoothing technique’s initial objective value is usually not as good but converges

faster, as predicted by theory. This observation suggests that the subgradient method might

be a better choice if obtaining a good solution in a short time is important. On the other

hand, if the accuracy of the optimization problem is critical, the smoothing technique is the

better choice for large-scale problems.

5.2 1-norm support vector machines

Support vector machines (SVMs) are popular techniques for classification, and 1-norm SVMs

are known to be effective in reducing input space features. Existing solution approaches for

the 1-norm SVM include solving them as LPs and using a generalized Newton method or its

10
−1

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

10
5

Time in Seconds

fk −
 θ

*

Comparison of Primal Error (log−log scale)

Subgradient method
Smoothing technique

Figure 2: Error versus time (log-log scale): comparison of the smoothing technique and the
subgradient method.

variants (Fung and Mangasarian, 2004; Mangasarian, 2006). We show in this subsection that

Algorithm 4 can also be applied to solve 1-norm SVMs. First, we introduce the standard

form of the 1-norm SVM and reformulate it as (P). Second, we compare Algorithm 4 with

the generalized Newton method proposed in Mangasarian (2006) for solving linear 1-norm

SVM and nonlinear kernel 1-norm SVM problems. From now on, we will refer to the method

of Mangasarian (2006) as Newton for short.

A standard 1-norm SVM is the following optimization problem

min
(x,γ,ξ)

‖x‖1 + C‖ξ‖1 (1-norm SVM)

s. t. D(Ãx− eγ) + ξ ≥ e (21)

ξ ≥ 0,

where Ã ∈ <m×n represents m points in <n to be separated by a hyperplane

aT x = γ. (22)

D ∈ <m×m is a diagonal matrix with element Dii ∈ {−1, 1} representing the label for the

i-th data point, and C > 0 is a trade-off parameter.

We claim that the variables (x, γ, ξ) are implicitly bounded. In fact, since the problem is

a minimization problem, there exists M > 0 such that ‖x∗‖1 + C‖ξ∗‖1 < M , where (ξ∗, x∗)

is an optimal solution to (1-norm SVM). Thus both x∗ and ξ∗ are bounded. At optimality,

(21) can be rewritten as

Deγ∗ ≤ DÃx∗ + ξ∗ − e,

and it follows from the boundedness of (x∗, ξ∗) that the right-hand side of the above inequality

is bounded. Therefore, there exists a scalar h > 0 such that Deγ∗ ≤ h e, which implies that

γ∗ ∈ [−h, h] because De’s components are either 1 or −1. To actually compute h, note that

the absolute value of each component of x∗ and ξ∗ is also bounded by M , and thus one

can compute an upper (if Dii > 0) or lower (if Dii < 0) estimate of the ith component of

DÃx∗ + ξ∗ − e as follows:

β(i) =

{
(Ãi)

+(M e) + (M − 1), if Dii = 1

−(−Ãi)+(M e) + 1, if Dii = −1
∀ i = 1, . . . ,m,

where Ãi is ith row of Ã and M can be easily estimated. Now we can calculate h =

maxi=1,...,m{|β(i)|}.
To reformulate (1-norm SVM) as (P), we first express the variables x and γ as the differ-

ence of two nonnegative variables, that is, x = x+−x−, γ = γ+−γ−. Because of the bound-

edness of γ, we may enforce γ+, γ− ∈ [0, h]. Define the matrix A := (De,−De,−DÃ,DÃ)

and α := (γ+; γ−; x+; x−) ≥ 0, such that (21) can be equivalently expressed as Aα+e ≤ ξ.

Then (1-norm SVM) is equivalent to

min
(α,ξ)

cTα + C eT ξ (1-norm SVM′)

s. t. Aα + e ≤ ξ

α, ξ ≥ 0,

where c is a vector of ones except that the first two entries are zero. Note that Assumption

1.0.1 is satisfied since αB =
(
γ+

γ−

)
≤ h e with B = {1, 2}. Therefore, Algorithm 4 is applicable

to (1-norm SVM′).

In the following, we compare Algorithm 4 with Newton (Mangasarian, 2006) for solving

two types of 1-norm SVMs: the linear 1-norm SVM and the nonlinear kernel 1-norm SVM.

The major difference is that the former seeks a separating hyperplane such as (22) while

the latter solves for a nonlinear separating surface. According to Mangasarian (2006), the

nonlinear kernel SVM can be modeled readily by (1-norm SVM′) with a simple replacement

of the data Ã as follows

Ã ←− K(Ã, ÃT)D,

where K(·, ·) is a kernel function. We discuss the details of the computational experiment

in the following paragraphs.

We selected six classification datasets from LIBSVM Data2 and used them to create

both Ã and K(Ã, ÃT). For the linear 1-norm SVM problem, we randomly sampled from

each dataset 10,000 or the maximum number of data points, whichever was smaller, to form

Ã. For the nonlinear kernel 1-norm SVM problem, we created two sets of K(Ã, ÃT) with

different sizes. In particular, we randomly sampled 5,000 data points to create the first set of

kernel matrices. We then randomly sampled 8,000 or the maximum number of data points,

whichever was smaller, to form the second set of kernel matrices. We choose the RBF kernel

and followed the procedure as prescribed in Hsu et al. (2003) to prepare K(Ã, ÃT). The

dataset and the sizes of the data matrices are presented in Table 3. Note that the kernel

matrices are square matrices and thus we only show the sizes of their first dimensions.

Table 3: Dimensions of Ã and K(Ã, ÃT)

Ã K(Ã, ÃT)
Dataset m n 1st Set, m 2nd Set, m
a6a 10000 122 5000 8000
covtype 10000 54 5000 8000
ijcnn1 10000 22 5000 8000
mushrooms 8124 112 5000 8000
usps 7291 256 5000 7291
w5a 9888 300 5000 8000

In SVMs, C is a user-specified parameter that often takes a set of different values in

tuning for the best parameter setting. In our experiment, we tested C = 1 and C = 0.01 for

both the linear SVM and nonlinear kernel SVM.

The stopping criterion for our smoothing technique is that the relative primal-dual gap

r = p−d
max{1,1/2(|p|+|d|)} should be smaller than 0.01, where p and d represent the primal and

dual objective values, respectively. For Newton, an unconstrained optimization is solved,

and its gradient is zero at optimality. Thus we set the stopping criterion for Newton to be

when the gradient has norm smaller than ε = 1e − 5.3 We also set a time limit of 18,000

seconds for all runs.

Both Algorithm 4 and Newton are implemented in Matlab. For the Newton method, we

adopted the code from the author’s web site.4 All computations were performed on the same

machine mentioned in the previous subsection.

2Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3We observe in our computational experiments that if the gradient is not sufficiently small, the resulting

solution of the Newton method is infeasible. Therefore, we set a small ε.
4http://www.cs.wisc.edu/dmi/svm/lpsvm/

We summarize the computational results for the linear 1-norm SVM in Tables 4 and 5,

corresponding to C = 1 and C = 0.01, respectively. We compare the smoothing technique

and the Newton method in terms of best objective values, CPU times, and optimality. Note

that the measures of optimality are different for the two methods and so cannot be compared

directly. The smoothing technique was able to solve all instances except for one (usps) to

within the error tolerance in the given time. The Newton method, however, fails to reduce

the gradient to within the error tolerance in three out of six instances when C = 1, and in

two out of six instances when C = 0.01. On the other hand, the Newton method is usually

fast when it does converge. Overall, we see that the smoothing technique is efficient and

robust compared with the Newton method in solving the linear 1-norm SVM problem. In

each table, t signifies that the time limit (18,000 sec.) was exceeded.

Table 4: Linear 1-norm SVM with C = 1: comparison of Algorithm 4 (Smooth) and the
Newton method (Newton) in terms of best objective values, CPU times, and measures of
optimality.

Objectives Times Optimality
Data Name Smooth Newton Smooth Newton Gap Gradient
a6a 3566.9 87283.5 1191.7 t 1.0e−2 7.5e+1
covtype 5778.1 5916.7 1051.2 t 1.0e−2 6.7e−2
ijcnn1 1741.2 1746.7 305.3 1.6 1.0e−2 1.0e−5
mushrooms 16.2 18.7 1000.3 605.4 1.0e−2 2.0e−6
usps 127.5 37177.5 t t 1.0e−2 2.1e+2
w5a 324.7 333.2 998.6 2.0 1.0e−2 1.0e−5

Table 5: Linear 1-norm SVM with C = 0.01: comparison of Algorithm 4 (Smooth) and the
Newton method (Newton) in terms of best objective values, CPU times, and measures of
optimality.

Objectives Times Optimality
Data Name Smooth Newton Smooth Newton Gap Gradient
a6a 43.1 618.8 11.5 t 1.0e−2 2.0e+1
covtype 79.5 81.8 8.1 3757.0 1.0e−2 1.0e−6
ijcnn1 20.8 20.8 3.3 0.3 8.0e−3 2.0e−6
mushrooms 8.5 8.8 9.7 0.5 9.0e−3 2.0e−6
usps 9.6 1436.0 150.7 t 1.0e−2 1.1e+2
w5a 5.7 5.6 6.3 0.1 1.0e−2 1.0e−5

The results for the first set of nonlinear kernel 1-norm SVM problems are summarized in

Tables 6 and 7, corresponding to C = 1 and C = 0.01, respectively. The kernel matrices for

this set of problems all have dimension 5000× 5000. When C = 1, both methods ran out of

time on two instances each, but Newton returned much worse objective values when it ran

out of time. The Newton method is faster than the smoothing technique on problems solved

by both methods to within the error tolerances. For C = 0.01, the smoothing technique

solved all problems within the given time while the Newton method ran out of time on four

out of the six instances.

Table 6: Nonlinear kernel 1-norm SVM with C = 1, first set of data: comparison of Algorithm
4 and the Newton method in terms of best objective values, CPU times, and measures of
optimality.

Objectives Times Optimality
Data Name Smooth Newton Smooth Newton Gap Gradient
a6a 1791.2 1791.3 15521.6 3863.6 1.0e−2 0.0e+0
covtype 2844.7 62739.0 10925.6 t 1.0e−2 6.7e−1
ijcnn1 993.2 962.0 t 170.8 1.6e−2 0.0e+0
mushrooms 378.4 376.6 t 4698.5 1.8e−2 0.0e+0
usps 117.5 17053.3 11974.7 t 1.0e−2 1.3e+0
w5a 319.2 314.0 10454.4 1422.4 1.0e−2 0.0e−0

Table 7: Nonlinear kernel 1-norm SVM with C = 0.01, first set of data: comparison of
Algorithm 4 and the Newton method in terms of best objective values, CPU times, and
measures of optimality.

Objectives Times Optimality
Data Name Smooth Newton Smooth Newton Gap Gradient
a6a 23.8 2171.6 1813.8 t 1.0e−2 3.1e−1
covtype 46.0 3499.2 259.4 t 1.0e−2 6.1e−1
ijcnn1 9.8 9.6 3170.3 118.4 1.0e−2 0.0e+0
mushrooms 35.5 1471.2 1379.9 t 1.0e−2 1.1e−1
usps 13.1 2841.6 1428.5 t 1.0e−2 6.9e−1
w5a 3.2 3.1 7253.7 2915.6 1.0e−2 0.0e+0

The computational results for the second set of nonlinear kernel 1-norm SVM are pre-

sented in Tables 8 and 9, corresponding to C = 1 and C = 0.01, respectively. From Table 3,

we know that the sizes of these problems are larger than the corresponding linear problems

and the first set of nonlinear-kernel problems, and thus they are more difficult to solve. When

C = 1, the smoothing technique was able to solve only one out of six instances to within the

error tolerance in the given amount of time and the Newton method was able to solve two

out of six. When C = 0.01, the smoothing technique was able to solve four out of six, while

the Newton method was able to solve two out of six. In terms of optimality, we find that

the optimality gap delivered by the smoothing technique is more consistent (particularly

when C = 0.01), whereas the Newton method often fails to converge, as indicated by large

gradient values.

Table 8: Nonlinear kernel 1-norm SVM with C = 1, second set of data: comparison of
Algorithm 4 and the Newton method in terms of best objective values, CPU times, and
measures of optimality.

Objectives Times Optimality
Data Name Smooth Newton Smooth Newton Gap Gradient
a6a 5533.3 2980.2 t 12341.2 4.3e−1 9.0e−6
covtype 2036.5 22851.5 t t 8.0e−2 8.4e+1
ijcnn1 3296.2 1542.0 t 172.2 3.6e−1 1.0e−5
mushrooms 732.6 433.6 t t 5.5e−1 5.9e−5
usps 199.1 7081.2 12782.5 t 1.0e−2 2.9e+2
w5a 1170.1 542.5 t t 4.8e−1 1.1e−5

Table 9: Nonlinear kernel 1-norm SVM with C = 0.01, second set of data: comparison of
Algorithm 4 and the Newton method in terms of best objective values, CPU times, and
measures of optimality.

Objectives Times Optimality
Data Name Smooth Newton Smooth Newton Gap Gradient
a6a 38.5 1008.5 16413.5 t 1.0e−2 2.1e+1
covtype 24.2 2292.5 2047.8 t 1.0e−2 5.3e+1
ijcnn1 16.3 15.4 t 758.4 2.7e−2 1.0e−5
mushrooms 44.0 1291.0 10520.5 t 1.0e−2 3.5e+1
usps 16.3 1544.0 3741.9 t 1.0e−2 2.4e+2
w5a 5.8 5.6 t 5462.1 1.2e−2 6.0e−6

For both the linear and nonlinear kernel problems, we observe that the smoothing tech-

nique is faster with smaller C values, a result that is consistent with the theoretical result

in Proposition 3.2.2 because a larger C value corresponds to a larger θ value. Our computa-

tional experiments also suggest that the smoothing technique is a favorable choice to solve

the 1-norm SVM problem when the parameter C is relatively small. The Newton method is

fast when it does converge but is not as robust as the smoothing technique.

6 Conclusion

In this paper, we have developed a first-order smoothing technique for solving (P) and the

equivalent problem (NS). To the best of our knowledge, this is the first application of

Nesterov’s smoothing technique to LPs with unbounded feasible sets. We show that the

iteration complexity of this smoothing technique depends on the parameter θ, which arises

when bounding the feasible set. We estimate θ as an upper bound on θ∗, the optimal value

of (NS). Since a smaller θ means a better iteration complexity, we have designed a strategy

that dynamically updates the value of θ as the algorithm obtains more information about

θ∗, resulting in faster convergence. This idea could be extended to other convex nonsmooth

problems with unbounded feasible sets.

The smoothing technique is designed for large-scale instances of (P). We have applied the

smoothing technique to two problems in machine learning: the linear programming ranking

problem and the 1-norm support vector machines. We demonstrate the effectiveness of our

method by comparing it with two existing methods: the subgradient method for solving the

ranking problem and the Newton method for solving the 1-norm SVM, respectively. Our

computational experience indicates that under many circumstances the smoothing technique

is a more attractive method because of its balanced efficiency and reliability.

References

A. Asuncion and D. Newman. UCI machine learning repository, 2007. URL http:

//archive.ics.uci.edu/ml/.

K. Ataman. Learning to rank by maximizing the AUC with linear programming for problems

with binary output. PhD thesis, University of Iowa, 2007.

K. Ataman, W. Street, and Y. Zhang. Learning to rank by maximizing auc with linear

programming. In Neural Networks, 2006. IJCNN ’06. International Joint Conference on,

pages 123 –129, 2006.

O. Banerjee, L. E. Ghaoui, A. d’Aspremont, and G. Natsoulis. Convex optimization tech-

niques for fitting sparse gaussian graphical models. In Proceedings of the 23rd Interna-

tional Conference on Machine Learning, ICML ’06, pages 89–96, New York, NY, USA,

2006. ACM. ISBN 1-59593-383-2. doi: http://doi.acm.org/10.1145/1143844.1143856. URL

http://doi.acm.org/10.1145/1143844.1143856.

S. Becker, J. Bobin, and E. Candes. Nesta: A fast and accurate first-order method for

sparse recovery, 2009. URL http://www.citebase.org/abstract?id=oai:arXiv.org:

0904.3367.

J. M. Borwein and A. S. Lewis. Convex analysis and nonlinear optimization. CMS Books

in Mathematics/Ouvrages de Mathématiques de la SMC, 3. Springer, New York, second

edition, 2006. ISBN 978-0387-29570-1; 0-387-29570-4.

A. d’Aspremont. Smooth optimization with approximate gradient. SIAM J. on Optimization,

19(3):1171–1183, 2008.

G. Fung and O. L. Mangasarian. A feature selection newton method for support vector

machine classification. Computational Optimization and Applications, 28(2):185–202, July

2004.

A. Gilpin, S. Hoda, J. Peña, and T. Sandholm. Gradient-based algorithms for finding nash

equilibria in extensive form games. In WINE, pages 57–69, 2007.

S. Hoda, A. Gilpin, and J. Peña. Smoothing techniques for computing nash equilibria of

sequential game. Working Paper, Tepper School of Business, Carnegie Mellon Universit,

2007.

C. W. Hsu, C. C. Chang, and C. J. Lin. A practical guide to support vector classification.

Technical report, Department of Computer Science and Information Engineering, National

Taiwan University, Taipei, 2003. http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

G. Lan, Z. Lu, and R. D. C. Monteiro. Primal-dual first-order methods with o(1/ε) iteration-

complexity for cone programming. Mathematical Programming, pages 1436–4646, 2009.

(Online).

O. L. Mangasarian. Exact 1-norm support vector machines via unconstrained convex differ-

entiable minimization. J. Mach. Learn. Res., 7:1517–1530, 2006.

A. Nedic and D. P. Bertsekas. Incremental subgradient methods for nondifferentiable opti-

mization. SIAM Journal on Optimization, 12(1):109–138, 2001.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer

Academic, Boston, MA, 2004.

Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–

152, 2005a.

Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM J. on

Optimization, 16(1):235–249, 2005b.

Y. Nesterov. Smoothing technique and its applications in semidefinite optimization. Math-

ematical Programming, 110(2):245–259, July 2007.

Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Pro-

gramming, 120:221–259, 2009. ISSN 0025-5610. URL http://dx.doi.org/10.1007/

s10107-007-0149-x. 10.1007/s10107-007-0149-x.

T. Zhou, D. Tao, and X. Wu. Nesvm: A fast gradient method for support vector machines.

In IEEE International Conference on Data Mining, pages 679–688, 2010.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In Neural

Information Processing Systems, page 16. MIT Press, 2003.

The submitted manuscript has been created by the UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Ar-

gonne”) under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for

itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce,

prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the

Government.

